
THE LECTURE 8

TRIGGERS

TRIGGER

A trigger is a special method of stored procedure and it invokes automatically when an event starts in the

database server. DML triggers execute when a user tries to modify data through a data manipulation

language (DML) event. DML events are INSERT, UPDATE, or DELETE statements on a table or view.

TYPES OF TRIGGERS

Triggers contain three types as follows;

 DML Triggers

 DDL Triggers

 Logon Triggers

DML TRIGGERS

DML stands for Data Manipulation Language. INSERT, UPDATE, and DELETE

statements are DML statements. DML triggers get fired whenever data is

modified using INSERT, UPDATE, and DELETE events.

DML triggers can be again classified into 2 types

 1. After triggers (Sometimes called FOR triggers)

 2. Instead of triggers

AFTER TRIGGER

 After triggers get fired after only with a condition when a modification action occurs. The INSERT,

UPDATE and DELETE commands because of an after trigger gets fired after the execution of a

complete statement.

 Therefore, we need to use tblEmployee and tblEmployeeAudit tables for further examples as follows;

 SQL Script to create tblEmployee table:

AFTER TRIGGERS

 Once a new Employee is added to the table in the database. Now, I want to retrieve the ID, date and

time, the new employee is added to the tblEmployeeAudit table.

 The easiest way to get the same result by using an AFTER TRIGGER for INSERT event.

 AFTER TRIGGER FOR INSERTION

 Example for AFTER TRIGGER for INSERT event on the tblEmployee table as follows;

AFTER TRIGGERS

 Insert into tblEmployee values (7,’Tan’, 2300, ‘Female’, 3)

 when a row deletes records from the table tblEmployee.

 Example for AFTER TRIGGER for DELETE event a tblEmployee table:

AFTER UPDATE TRIGGER

 Triggers work with two organized tables, INSERTED and DELETED. Newly updated data stored in the

inserted table and old specific data stored in the deleted table. After triggering for UPDATE event makes

use of both inserted and deleted tables.

 Create AFTER UPDATE trigger script:

INSTEAD OF INSERT TRIGGER

 As we well know that AFTER triggers get fired after the triggering action (INSERT, UPDATE or DELETE
events), whereas, INSTEAD OF triggers get fired instead of the triggering action (INSERT, UPDATE or
DELETE events).

 In addition, INSTEAD OF Insert triggers makes use for correctly update views that are based on multiple
tables.

CREATE TABLE tblEmployee

(Id int Primary Key,

Name nvarchar(30),

Gender nvarchar(10),

DepartmentId int)

SQL SCRIPT TO CREATE TBLDEPARTMENT TABLE:

CREATE TABLE tblDepartment

(DeptId int Primary Key,

DeptName nvarchar(20))

INSTEAD OF INSERT TRIGGER

CREATING A VIEW

So, we have our two required tables, let’s create a view which is based on these two tables, it will fetch the

records of Employee Id, Name, Gender and DepartmentName columns. Therefore, the view is based on multiple

tables.

SCRIPT TO CREATE A VIEW:

Create view vWEmployeeDetails

as

Select Id, Name, Gender, DeptName

from tblEmployee

join tblDepartment

on tblEmployee.DepartmentId = tblDepartment.DeptId

Once you execute this line, Select * from vWEmployeeDetails, It will retrieve all the records from the table as
follows;

INSERTING INTO A VIEW

 So, let’s insert a single row into the view function, vWEmployeeDetails, by running the

following query. At this moment, it will throw an error like “View or function

vWEmployeeDetails is not updatable because the modification affects multiple base tables.”

 Insert into vWEmployeeDetails values (7, ‘Valarie’, ‘Female’, ‘IT’)

 Finally, we inserted a row above into a view which is based on multiple tables, it gives an

error by default.

INSTEAD OF INSERT TRIGGER

 Now, let’s have a look into this, how INSTEAD OF TRIGGERS give us help in

this condition. Since we are facing an error, when we try to insert a single row

into the view function, let’s make an INSTEAD OF INSERT trigger on the view

vWEmployeeDetails.

INSTEAD OF INSERT TRIGGER

 SCRIPT TO CREATE INSTEAD OF INSERT TRIGGER:

INSTEAD OF UPDATE TRIGGER

An INSTEAD OF UPDATE triggers gets fired instead of an update event, that can be on a table or a view function. For example, let’s
understand, an INSTEAD OF UPDATE trigger, and then when you try to make the update into the row within that view function or table,
instead of the UPDATE, in this situation, the trigger get invoked automatically. Instead of update trigger based on multiple tables.

So, let’s create both the tables Employee and Department as follows.

SQL SCRIPT TO CREATE TBLEMPLOYEE TABLE:

 CREATE TABLE tblEmployee

 (Id int Primary Key,

 Name nvarchar(30),

 Gender nvarchar(10),

 DepartmentId int)

SQL SCRIPT TO CREATE TBLDEPARTMENT TABLE

 CREATE TABLE tblDepartment

 (DeptId int Primary Key,

 DeptName nvarchar(20)

)

INSTEAD OF UPDATE TRIGGER

So, we have our required two tables, let’s create a view which is based on these two tables, it will fetch the
records of Employee Id, Name, Gender and DepartmentName columns which are based on multiple tables.

SCRIPT TO CREATE THE VIEW:

 Create view vWEmployeeDetails

 as

 Select Id, Name, Gender, DeptName

 from tblEmployee

 join tblDepartment

 on tblEmployee.DepartmentId = tblDepartment.DeptId

Once you execute this line, Select * from vWEmployeeDetails, It will retrieve all the records from the table as
follows

INSTEAD OF UPDATE TRIGGER

INSTEAD OF UPDATE TRIGGER

In above example, when we inserted a single row into the view table and got an error statement like- ‘View or
function vWEmployeeDetails is not updatable because the modification affects multiple base tables.‘

So, let’s quickly update the view function, in addition, it affects both the tables, and if we face the same error
statement. Then, the UPDATE command changes its column “Name” from the table tblEmployee and column
“DeptName” from the table tblDepartment.

So, when we run this query, we face the same error.

 Update vWEmployeeDetails

 set Name = ‘Johny’, DeptName = ‘IT’

 where Id = 1

So, let’s do some change in the department of John from HR to IT. The UPDATE query runs only one table and
that is the tblDepartment table. So, the query may succeed. But, there is a condition before executing the query,
please make note that employees name JOHN and BEN both are in HR department

INSTEAD OF UPDATE TRIGGER

 Update vWEmployeeDetails

 set DeptName = ‘IT’

 where Id = 1

After execution of the query, now select all data records from the view function, and note that

BEN’sDeptName has also changed to IT. We also change JOHN’s DeptName. So, the UPDATE command

did not work as we expected. Why it happened, because of the UPDATE query command, updated column

name DeptName from HR to the IT, in the tblDepartment table. For an update, we need to change the

DeptId of JOHN from 3 to 1.

INSTEAD OF UPDATE TRIGGER

 INCORRECTLY UPDATED VIEW

INSTEAD OF UPDATE TRIGGER

 SCRIPT TO CREATE INSTEAD OF UPDATE TRIGGER:

INSTEAD OF DELETE TRIGGER

 An INSTEAD OF DELETE trigger gets fired in the state of the DELETE event on a table or a view. Let’s

understand with an example. Let’s assume, an INSTEAD OF DELETE trigger on a view or a table, and

when you try to update a single row from that view or table, in the state of a real DELETE event, then

the trigger automatically gets fired.

 INSTEAD OF DELETE TRIGGERS only used to delete data in terms of records from a view or a table,

which is based on multiple tables.

INSTEAD OF DELETE TRIGGER

Let’s create two tables Employee and Department.

SQL SCRIPT TO CREATE TBLEMPLOYEE TABLE:

 CREATE TABLE tblEmployee

 (Id int Primary Key,

 Name nvarchar(30),

 Gender nvarchar(10),

 DepartmentId int)

SQL SCRIPT TO CREATE TBLDEPARTMENT TABLE

 CREATE TABLE tblDepartment

 (DeptId int Primary Key,

 DeptName nvarchar(20)

)

INSTEAD OF DELETE TRIGGER

Since we now have the required tables, let’s create a view based on these tables.

And, this view will return Employee Id, Name, Gender and DepartmentName columns. So, the view is
based on multiple tables.

SCRIPT TO CREATE THE VIEW:

 Create view vWEmployeeDetails

 as

 Select Id, Name, Gender, DeptName

 from tblEmployee

 join tblDepartment

 on tblEmployee.DepartmentId = tblDepartment.DeptId

INSTEAD OF DELETE TRIGGER

 Once you execute this line, Select * from vWEmployeeDetails, It will retrieve all the records from the

table as follows;

 In above example, when we inserted a single row into the view table and got an error statement like-

‘View or function vWEmployeeDetails is not updatable because the modification affects multiple base

tables.‘

 Although, when we tried to update a view which is based on multiple tables, we faced the same error. To

get the error, it will affect both the base tables. If the update query affects only one base table, we do not

get the error, but the UPDATE query does not work properly if the “DeptName” column gets updated.

 Now, let’s try to delete a row from the view, and we get the same error.

 Delete from vWEmployeeDetails where Id = 1

INSTEAD OF DELETE TRIGGER

SCRIPT TO CREATE INSTEAD OF DELETE TRIGGER:

 Create Trigger tr_vWEmployeeDetails_InsteadOfDelete

 on vWEmployeeDetails

 instead of delete

 as

 Begin

 Delete tblEmployee

 from tblEmployee

 join deleted

 on tblEmployee.Id = deleted.Id

INSTEAD OF DELETE TRIGGER

The trigger tr_vWEmployeeDetails_InsteadOfDelete applicable in DELETED table. But Deleted table

contains all the rows that we tried to DELETE from the view. So, we join the DELETED table with table

tblEmployee to delete the unwanted rows. In such cases, Joins are much faster than the subqueries.

When you execute the following DELETE command, the row gets DELETED as expected from

tblEmployee table

 Delete from vWEmployeeDetails where Id = 1

 A small difference among the triggers as given below

